Supplementary Information Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least-motion mechanism with an unprecedented short-lived pre-decarboxylation intermediate Marc Bruning¹, Marco Berheide¹, Danilo Meyer^{2,3}, Ralph Golbik³, Hans Bartunik⁴, Andreas Liese¹* & Kai Tittmann^{2,3}* ¹ Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany ² Albrecht-von-Haller-Institut, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany ³ Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany ⁴ Max-Planck-Gesellschaft, Arbeitsgruppen für strukturelle Molekularbiologie (MPG-ASMB) c/o DESY, Notkestraße 85, D-22603 Hamburg, Germany *To whom correspondence should be addressed: ktittma@gwdg.de (K.T.) or liese@tuhh.de (A. L.) ## Supp. Fig. 1 Initial F_o - F_c omit map (top row, contoured at 3σ) and simulated-annealing $2F_o$ - F_c omit map (bottom row, contoured at 1σ) of the PMThDP adduct bound to BFDC from P. putida. The electron density maps were calculated from model phases of a model prior to inclusion of the PMThDP atoms. For calculation of the simulated-annealing omit map, a slow cooling protocol (1000 K start temperature, 25 K cooling per cycle, 0.004 ps time steps, 6 steps per cycle) with torsion angle dynamics was applied using CNS (I). 1.) Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination, *Acta Crystallographica Section D-Biological Crystallography* 54, 905-921. Supp. Fig. 2 Circular dichroism spectra obtained after addition of increasing amounts of substrate analog methylbenzoylphosphonate to 2 mg/mL BFDC in 50 mM potassium phosphate buffer, pH 6.5 supplemented with 2.5 mM MgSO₄ and 200 μ M ThDP at 20 °C. Supp. Fig. 3 Kinetics of PMThDP formation after addition of 2.5 mM MBP to 7.5 mg/mL in 50 mM potassium phosphate buffer, pH 6.5 with 2.5 mM MgSO₄ at 30 °C as analyzed by 1H NMR spectroscopy after acid quench isolation of reaction intermediates. - (A) Sections of selected 1H NMR spectra showing the 2'-CH₃ and 4-CH₃ signals of quench-isolated ThDP and PMThDP after different reaction times. - (**B**) The kinetic analysis reveals a pseudo-first-order rate constant of $k_{\rm obs} = 3.1~(\pm~0.7)~{\rm s}^{-1}$ being in fair agreement with the stopped-flow results (forward rate constant of PMThDP formation $k_{+2} = 2.33 \pm 0.17~{\rm s}^{-1}$). Supp. Fig. 4 Stereo view of the X-ray structure of PMThDP trapped in the active site of BFDC with selected amino acid side chains shown. The electron density is contoured at 1.0σ in a $2F_o$ - F_c map. For clarity, the electron density of the intermediate is depicted in red and that of the protein in blue. The electron density map was calculated from model phases of a model after inclusion of the MBP moiety of the PMThDP adduct.